Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cell Host Microbe ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640929

RESUMO

To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.

2.
J Control Release ; 369: 556-572, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580136

RESUMO

Vaccines represent one of the most powerful and cost-effective innovations for controlling a wide range of infectious diseases caused by various viruses and bacteria. Unlike mRNA and DNA-based vaccines, subunit vaccines carry no risk of insertional mutagenesis and can be lyophilized for convenient transportation and long-term storage. However, existing adjuvants are often associated with toxic effect and reactogenicity, necessitating expanding the repertoire of adjuvants with better biocompatibility, for instance, designing self-adjuvating polymeric carriers. We herein report a novel subunit vaccine delivery platform constructed via in situ free radical polymerization of C7A (2-(Hexamethyleneimino) ethyl methacrylate) and acrylamide around the surface of individual protein antigens. Using ovalbumin (OVA) as a model antigen, we observed substantial increases in both diameter (∼70 nm) and surface potential (-1.18 mV) following encapsulation, referred to as n(OVA)C7A. C7A's ultra pH sensitivity with a transition pH around 6.9 allows for rapid protonation in acidic environments. This property facilitates crucial processes such as endosomal escape and major histocompatibility complex (MHC)-I-mediated antigen presentation, culminating in the substantial CD8+ T cell activation. Additionally, compared to OVA nanocapsules without the C7A components and native OVA without modifications, we observed heightened B cell activation within the germinal center, along with remarkable increases in serum antibody and cytokine production. It's important to note that mounting evidence suggests that adjuvant effects, particularly its targeted stimulation of type I interferons (IFNs), can contribute to advantageous adaptive immune responses. Beyond its exceptional potency, the nanovaccine also demonstrated robust formation of immune memory and exhibited a favorable biosafety profile. These findings collectively underscore the promising potential of our nanovaccine in the realm of immunotherapy and vaccine development.

3.
J Appl Toxicol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642013

RESUMO

Mitophagy is a selective cellular process critical for the removal of damaged mitochondria. It is essential in regulating mitochondrial number, ensuring mitochondrial functionality, and maintaining cellular equilibrium, ultimately influencing cell destiny. Numerous pathologies, such as neurodegenerative diseases, cardiovascular disorders, cancers, and various other conditions, are associated with mitochondrial dysfunctions. Thus, a detailed exploration of the regulatory mechanisms of mitophagy is pivotal for enhancing our understanding and for the discovery of novel preventive and therapeutic options for these diseases. Nanomaterials have become integral in biomedicine and various other sectors, offering advanced solutions for medical uses including biological imaging, drug delivery, and disease diagnostics and therapy. Mitophagy is vital in managing the cellular effects elicited by nanomaterials. This review provides a comprehensive analysis of the molecular mechanisms underpinning mitophagy, underscoring its significant influence on the biological responses of cells to nanomaterials. Nanoparticles can initiate mitophagy via various pathways, among which the PINK1-Parkin pathway is critical for cellular defense against nanomaterial-induced damage by promoting mitophagy. The role of mitophagy in biological effects was induced by nanomaterials, which are associated with alterations in Ca2+ levels, the production of reactive oxygen species, endoplasmic reticulum stress, and lysosomal damage.

4.
Comp Immunol Microbiol Infect Dis ; 108: 102159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490118

RESUMO

Whole-cell inactivated vaccines (bacterins) are the only licensed vaccines available for leptospirosis prevention and control, especially in domestic and farm animals. However, despite their widespread use, inconsistencies in their efficacy have been reported. Because immunity induced by bacterins is mainly mediated by antibodies against leptospiral lipopolysaccharides, the involvement of cellular responses is not well-known. The aim of this study was to investigate the efficacy and characterize the humoral and cellular immune responses induced by whole-cell inactivated leptospirosis bacterin formulations containing serovars Bratislava, Canicola, Copenhageni, Grippotyphosa, Hardjoprajitno, and Pomona. For the potency test, hamsters were immunized with one dose of polyvalent bacterins (either commercial or experimental) and then challenged with a virulent Pomona strain. Serological (MAT and IgM and IgG-ELISA) and cellular (cytokine transcription in blood evaluated by RT-qPCR) analyses were performed. The results revealed that vaccination with either bacterin formulation was able to protect 90-100% of the hamsters infected with the Pomona serovar, although most of the surviving animals remained as renal carriers. Specific agglutinating antibodies and significant levels of IgM, IgG, and IgG2 (P < 0.05) that were able to react with the six serovars present in the vaccine formulations were produced, indicating that the vaccines can potentially provide immunity against all strains. The protective immunity of these vaccines was mainly mediated by balanced a Th1/Th2 response, characterized by increased IFN-γ, IL-10 and IL-α transcription. These data support the importance of characterizing immunological responses involved in bacterin efficacy and investing in the improvement of these vaccine formulations.


Assuntos
Leptospira , Leptospirose , Doenças dos Roedores , Cricetinae , Animais , Vacinas Combinadas , Citocinas , Leptospirose/veterinária , Vacinas Bacterianas , Anticorpos Antibacterianos , Imunoglobulina G , Imunoglobulina M
5.
Ecotoxicol Environ Saf ; 272: 116041, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350213

RESUMO

Although PFOS has been banned as a persistent organic pollutant, it still exists in large quantities within the environment, thus impacting the health of aquatic ecosystems. Previous studies focused solely on high PFOS concentrations, disregarding the connection with environmental factors. To gain a more comprehensive understanding of the PFOS effects on aquatic ecosystems amidst changing environmental conditions, this study investigated the cellular responses of Microcystis aeruginosa to varying PFOS concentrations under heatwave and nutrient stress conditions. The results showed that PFOS concentrations exceeding 5.0 µg/L had obvious effects on multiple physiological responses of M. aeruginosa, resulting in the suppression of algal cell growth and the induction of oxidative damage. However, PFOS concentration at levels below 20.0 µg/L has been found to enhance the growth of algal cells and trigger significant oxidative damage under heatwave conditions. Heatwave conditions could enhance the uptake of PFOS in algal cells, potentially leading to heightened algal growth when PFOS concentration was equal to or less than 5.0 µg/L. Conversely, deficiency or limitation of nitrogen and phosphorus significantly decreased algal abundance and chlorophyll content, inducing severe oxidative stress that could be mitigated by exposure to PFOS. This study holds significance in managing the impact of PFOS on algal growth across diverse environmental conditions.


Assuntos
Microcystis , Ecossistema , Clorofila , Estresse Oxidativo , Fósforo/farmacologia
6.
Vaccine ; 42(6): 1292-1299, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38296705

RESUMO

BACKGROUND: The emergence and rapid spread of new mutant strains of SARS-CoV-2 necessitate the development of a new generation vaccine capable of neutralizing a broad range of variants. When the SARS-CoV-2 Omicron variant emerged, individuals in China had already received an inactivated (INA) or a type 5 adenovirus-vectored (Ad5) SARS-CoV-2 vaccine targeting the wild-type virus. We have recently developed a bivalent recombinant type 5 vaccine targeting both the wild-type strain and the Omicron variant (Ad5-nCoV/O). The objectives of this study were to assess the immunogenicity of the bivalent vaccine as a booster against both the wild type and the Omicron variant. METHODS: In the single immunization model, mice received one intramuscular immunization with monovalent or bivalent Ad5-vectored vaccines targeting both wild-type SARS-CoV-2 and Omicron variants. In the prime-boost model, mice were primed intramuscularly with an INA or Ad5-vectored vaccine targeting wild-type SARS-CoV-2, and then boosted intramuscularly or intranasally with heterologous or homologous INA or monovalent or bivalent Ad5-vectored vaccines targeting both wild-type SARS-CoV-2 and Omicron variants. The vaccine-induced antibody responses and cellular immune responses were measured using ELISA, pseudovirus-based neutralization assays, the intracellular cytokine staining (ICS) and ELISpot. RESULTS: Single-dose prime vaccination with the monovalent and bivalent vaccines elicited robust antibody responses and CD4 + and CD8 + cellular responses against the spike protein of WT and Omicron SARS-CoV-2. Both intramuscular and intranasal boost vaccination with the bivalent Ad5-nCoV/O following a prime with INA or Ad5-vectored vaccines induced strong serum neutralization antibody responses to both wild type and Omicron variants. A heterologous prime-boost vaccination elicited greater neutralization antibody responses than a homologous prime-boost vaccination when mice were boosted with Ad5-vectored vaccines following a prime with INA. Intranasal boost also resulted in significant mucosal IgA responses. CONCLUSION: The bivalent vaccine Ad5-nCoV/O exhibited robust immunogenicity, inducing broad-spectrum cross-neutralizing antibodies and cellular immune responses against both wild type and Omicron variants of SARS-CoV-2. The results demonstrated the potential of the bivalent vaccine in addressing the challenges posed by emerging SARS-CoV-2 Omicron variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Vacinas Combinadas , Modelos Animais de Doenças , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , ELISPOT , Adenoviridae/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
7.
J Hazard Mater ; 464: 132975, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38044020

RESUMO

Cyclosporine A (CsA) is a model drug that has caused great concern due to its widespread use and abuse in the environment. However, the potential harm of CsA to organisms also remains largely unknown, and this issue is exceptionally important for the health risk assessment of antibiotics. To address this concern, the crosstalk between CsA stress and cellular metabolism at the proteomic level in Escherichia coli was investigated and dissected in this study. The results showed that CsA inhibited E. coli growth in a time-dependent manner. CsA induced reactive oxygen species (ROS) overproduction in a dose- and time-dependent manner, leading to membrane depolarization followed by cell apoptosis. In addition, translation, the citric acid cycle, amino acid biosynthesis, glycolysis and responses to oxidative stress and heat were the central metabolic pathways induced by CsA stress. The upregulated proteins, including PotD, PotF and PotG, controlled cell growth. The downregulated proteins, including SspA, SspB, CstA and DpS, were regulators of self-feedback during the starvation process. And the up- and downregulated proteins, including AtpD, Adk, GroS, GroL and DnaK, controlled energy production. These results provide an important reference for the environmental health risk assessment of CsA.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Ciclosporina/farmacologia , Ciclosporina/metabolismo , Imunossupressores/toxicidade , Escherichia coli/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Redes e Vias Metabólicas , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo
8.
J Genet Eng Biotechnol ; 21(1): 117, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962693

RESUMO

BACKGROUND: Hepatitis C Virus (HCV) infection is one of the causal agents of liver disease burden. Six multiple antigenic peptides were synthesized including (P315, P412, and P517) plus (P1771, P2121, and P2941) to induce humoral and cellular responses, respectively against HCV infection. AIM: This paper aimed to employ computational tools to evaluate the efficacy of each peptide individually and to determine the most effective one for better vaccine development and/or immunotherapy. METHODS: VaxiJen web and AllerTOP servers were used for antigenicity and allergenicity prediction, respectively. The ToxinPred web server was used to investigate the peptide toxicity. Each peptide was docked with its corresponding receptors. RESULTS: No peptides were expected to be toxic. P315 and P2941 are predicted to have robust antigenic properties, lowest allergenicity, and minimal sOPEP energies. In turn, P315 (derived from gpE1) formed the highest hydrophobic bonds with the BCR and CD81 receptors that will elicit B cell function. P2941 (derived from NS5B) was shown to strongly bind to both CD4 and CD8 receptors that will elicit T cell function. CONCLUSION: P315 successfully bound to B cell (BCR and CD81) receptors. Also, P2941 is strongly bound to T cell (CD4 and CD8) receptors.

9.
Emerg Microbes Infect ; 12(2): 2256422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671994

RESUMO

Influenza virus is a prominent cause of respiratory illness in humans. Current influenza vaccines offer strain-specific immunity, while provide limited protection against drifted strains. Broad-spectrum influenza vaccines can induce broad and long-term immunity, and thus are regarded as a future direction for the development of next-generation influenza vaccines. In this study, we have conceptualized a novel mRNA-based multi-antigen influenza vaccine consisting of three conserved antigens of influenza A virus, including the ectodomain of the M2 ion channel (M2e), the long alpha helix of haemagglutinin stalk region (LAH), and nucleoprotein (NP). The vaccine design aims to enhance its potency and promote the development of a future broad-spectrum influenza vaccine. Our mRNA-based vaccine demonstrated potent humoral and cellular responses throughout the time points of the murine model, inducing viral neutralizing antibodies, antibody-dependent cell cytotoxicity effect mediating antibodies and cross-reactive CD8+ T cell immune responses. The vaccine conferred broad protection against H1N1, H3N2, and H9N2 viruses. Moreover, the single-cell transcriptional profiling of T cells in the spleens of vaccinated mice revealed that the mRNA-based vaccine significantly promoted CD8+ T cells and memory T cells by prime-boost immunization. Our results suggest that the mRNA-based influenza vaccine encoding conserved proteins is a promising approach for eliciting broadly protective humoral and cellular immunity against various influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Vacinas contra Influenza/genética , Linfócitos T CD8-Positivos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/prevenção & controle
10.
Sci Total Environ ; 903: 166707, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660808

RESUMO

Perfluorooctanoic acid (PFOA), a widespread and emerging organic contaminant of aquatic environments, has high bioaccumulation potential and high toxicity. Consequently, major concerns have been raised worldwide regarding the management of this pollutant in aquatic ecosystems. To thoroughly understand PFOA's toxic effects on aquatic organisms, systematic investigations were conducted on the cellular responses of Microcystis aeruginosa to the environmental concentrations of PFOA under various concentrations as well as phosphorus (P) conditions (concentrations and forms). The results showed that P conditions remarkably affected cyanobacterial growth as well as photosynthetic pigment content, triggered oxidative stress to disrupt the function and structure of the cell membrane, and caused changes in the extracellular and intracellular contents of microcystin-LR (MC-LR). Furthermore, PFOA (100 µg/L) was absorbed by cyanobacterial cells through the stimulation of the secretion of extracellular polymeric substances (EPS) by M. aeruginosa. After entering the cyanobacterial cells, PFOA inhibited photosynthesis, reduced P absorption, induced oxidative damage, lead to a loss of cell integrity evident in scanning electron microscope images, and increased mcyA gene expression to promote MC-LR production. Moreover, the limited P concentration and forms conditions led to increased PFOA absorption by cyanobacterial cells, which further upregulated mcyA gene expression and increased the risk of MC-LR diffusion into the aquatic environment. Our present study provided a theoretical basis and new ideas for understanding and addressing safety issues related to the presence of PFOA in aquatic environments with varying nutritional statuses.

11.
Nanomedicine (Lond) ; 18(18): 1175-1194, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37712604

RESUMO

Aim: To develop, characterize and evaluate an oil/water nanoemulsion with squalene (CTVad1) to be approved as an adjuvant for the SpiN COVID-19 vaccine clinical trials. Materials & methods: Critical process parameters (CPPs) of CTVad1 were standardized to meet the critical quality attributes (CQAs) of an adjuvant for human use. CTVad1 and the SpiN-CTVad1 vaccine were submitted to physicochemical, stability, in vitro and in vivo studies. Results & conclusion: All CQAs were met in the CTVad1 production process. SpiN- CTVad1 met CQAs and induced high levels of antibodies and specific cellular responses in in vivo studies. These results represented a critical step in the process developed to meet regulatory requirements for the SpiN COVID-19 vaccine clinical trial.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19/uso terapêutico , Emulsões/química , COVID-19/prevenção & controle , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Imunológicos/química , Vacinas/química
12.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631046

RESUMO

COVID-19 continues to cause an increase in the number of cases and deaths worldwide. Due to the ever-mutating nature of the virus, frequent vaccination against COVID-19 is anticipated. Most of the approved SARS-CoV-2 vaccines are administered using the conventional intramuscular route, causing vaccine hesitancy. Thus, there is a need for an effective, non-invasive vaccination strategy against COVID-19. This study evaluated the synergistic effects of a subunit microparticulate vaccine delivered using microneedles. The microparticles encapsulated a highly immunogenic subunit protein of the SARS-CoV-2 virus, such as the spike protein's receptor binding domain (RBD). Adjuvants were also incorporated to enhance the spike RBD-specific immune response. Our vaccination study reveals that a microneedle-based vaccine delivering these microparticles induced spike RBD-specific IgM, IgG, IgG1, IgG2a, and IgA antibodies. The vaccine also generated high levels of CD4+ and CD8a+ molecules in the secondary lymphoid organs. Overall, dissolving microneedles delivery spike RBD antigen in microparticulate form induced a robust immune response, paving the way for an alternative self-administrable, non-invasive vaccination strategy against COVID-19.

13.
New Phytol ; 240(1): 61-67, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37483019

RESUMO

In recent years, single-cell genomics, coupled to imaging techniques, have become the state-of-the-art approach for characterising biological systems. In plant sciences, a variety of tissues and species have been profiled, providing an enormous quantity of data on cell identity at an unprecedented resolution, but what biological insights can be gained from such data sets? Using recently published studies in plant sciences, we will highlight how single-cell technologies have enabled a better comprehension of tissue organisation, cell fate dynamics in development or in response to various stimuli, as well as identifying key transcriptional regulators of cell identity. We discuss the limitations and technical hurdles to overcome, as well as future directions, and the promising use of single-cell omics to understand, predict, and manipulate plant development and physiology.


Assuntos
Genômica , Células Vegetais , Genômica/métodos , Diferenciação Celular , Plantas/genética
14.
Clin Proteomics ; 20(1): 28, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501157

RESUMO

BACKGROUND: Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate and muscle-invasive bladder cancer (MIBC) has unfavorable outcomes in urothelial bladder cancer (UBC) patients. Complex UBC-related protein biomarkers for outcome prediction may provide a more efficient management approach with an improved clinical outcome. The aim of this study is to recognize tumor-associated proteins, which are differentially expressed in different stages of UBC patients compared non-cancerous tissues. METHODS: The proteome of tissue samples of 42 UBC patients (NMIBC n = 25 and MIBC n = 17) was subjected to two-dimensional electrophoresis (2-DE) combined with Liquid chromatography-mass spectrometry (LC-MS) system to identify differentially expressed proteins. The intensity of protein spots was quantified and compared with Prodigy SameSpots software. Functional, pathway, and interaction analyses of identified proteins were performed using geneontology (GO), PANTHER, Reactome, Gene MANIA, and STRING databases. RESULTS: Twelve proteins identified by LC-MS showed differential expression (over 1.5-fold, p < 0.05) by LC-MS, including 9 up-regulated in NMIBC and 3 up-regulated in MIBC patients. Proteins involved in the detoxification of reactive oxygen species and cellular responses to oxidative stress showed the most significant changes in UBC patients. Additionally, the most potential functions related to these detected proteins were associated with peroxidase, oxidoreductase, and antioxidant activity. CONCLUSION: We identified several alterations in protein expression involved in canonical pathways which were correlated with the clinical outcomes suggested might be useful as promising biomarkers for early detection, monitoring, and prognosis of UBC.

15.
Appl Microbiol Biotechnol ; 107(12): 4051-4068, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178307

RESUMO

Ethanol fermentations can be prematurely halted as Saccharomyces cerevisiae faces adverse conditions, such as acidic pH, presence of acetic acid, and supraoptimal temperatures. The knowledge on yeast responses to these conditions is essential to endowing a tolerant phenotype to another strain by targeted genetic manipulation. In this study, physiological and whole-genome analyses were conducted to obtain insights on molecular responses which potentially render yeast tolerant towards thermoacidic conditions. To this end, we used thermotolerant TTY23, acid tolerant AT22, and thermo-acid tolerant TAT12 strains previously generated by adaptive laboratory evolution (ALE) experiments. The results showed an increase in thermoacidic profiles in the tolerant strains. The whole-genome sequence revealed the importance of genes related to: H+, iron, and glycerol transport (i.e., PMA1, FRE1/2, JEN1, VMA2, VCX1, KHA1, AQY3, and ATO2); transcriptional regulation of stress responses to drugs, reactive oxygen species and heat-shock (i.e., HSF1, SKN7, BAS1, HFI1, and WAR1); and adjustments of fermentative growth and stress responses by glucose signaling pathways (i.e., ACS1, GPA1/2, RAS2, IRA2, and REG1). At 30 °C and pH 5.5, more than a thousand differentially expressed genes (DEGs) were identified in each strain. The integration of results revealed that evolved strains adjust their intracellular pH by H+ and acetic acid transport, modify their metabolism and stress responses via glucose signaling pathways, control of cellular ATP pools by regulating translation and de novo synthesis of nucleotides, and direct the synthesis, folding and rescue of proteins throughout the heat-shock stress response. Moreover, the motifs analysis in mutated transcription factors suggested a significant association of SFP1, YRR1, BAS1, HFI1, HSF1, and SKN7 TFs with DEGs found in thermoacidic tolerant yeast strains. KEY POINTS: • All the evolved strains overexpressed the plasma membrane H+ -ATPase PMA1 at optimal conditions • Tolerant strain TAT12 mutated genes encoding weak acid and heat response TFs HSF1, SKN7, and WAR1 • TFs HSF1 and SKN7 likely controlled the transcription of metabolic genes associated to heat and acid tolerance.


Assuntos
Proteínas de Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Saccharomyces cerevisiae/metabolismo , Temperatura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana/metabolismo , Proteína Fosfatase 1/metabolismo , Transativadores/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
16.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770355

RESUMO

The use of eco-friendly engineered nanomaterials represents a recent solution for an effective and safe treatment of contaminated dredging sludge. In this study, an eco-designed engineered material based on cross-linked nanocellulose (CNS) was applied for the first time to decontaminate a real matrix from heavy metals (namely Zn, Ni, Cu, and Fe) and other undesired elements (mainly Ba and As) in a lab-scale study, with the aim to design a safe solution for the remediation of contaminated matrices. Contaminated freshwater sludge was treated with CNS coupled with a filtering fine-mesh net, and the obtained waters were tested for acute and sublethal toxicity. In order to check the safety of the proposed treatment system, toxicity tests were conducted by exposing the bacterium Aliivibrio fischeri and the crustacean Heterocypris incongruens, while subtoxicity biomarkers such as lysosomal membrane stability, genetic, and chromosomal damage assessment were performed on the freshwater bivalve Dreissena polymorpha. Dredging sludge was found to be genotoxic, and such genotoxicity was mitigated by the combined use of CNS and a filtering fine-mesh net. Chemical analyses confirmed the results by highlighting the abetment of target contaminants, indicating the present model as a promising tool in freshwater sludge nanoremediation.

17.
Immunology ; 168(1): 184-197, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057099

RESUMO

Given increased acceptance of the CoronaVac, there is an unmet need to assess the safety and immunogenic changes of CoronaVac in patients with rheumatic diseases (RD). Here we comprehensively analysed humoral and cellular responses in patient with RD after a three-dose immunization regimen of CoronaVac. RD patients with stable condition and/or low disease activity (n = 40) or healthy controls (n = 40) were assigned in a 1:1 ratio to receive CoronaVac (Sinovac). The prevalence of anti-receptor binding domain (RBD) antibodies and neutralizing antibodies was similar between healthy control (HC) and RD patients after the second and the third vaccination. However, the titers of anti-RBD IgG and neutralizing antibodies were significantly lower in RD patients compared to HCs (p < 0.05), which was associated with an impaired T follicular helper (Tfh) cell response. Among RD patients, those who generated an antibody response displayed a significantly higher Tfh cells compared to those who failed after the first and the second vaccination (p < 0.05). Interestingly, subjects with a negative serological response displayed a similar Tfh memory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides as their anti-RBD IgG positive counterpart, and all (4/4) of the non-responders in HCs, and 62.5% (5/8) of the non-responders in patients with RD displayed a positive serological response following the third dose. No serious adverse events were observed. In conclusion, our findings support SARS-CoV-2 vaccination in patients with RD with stable and/or low disease activity. The impaired ability in generating vaccine-specific antibodies in patients with RD was associated with a reduction in Tfh cells induction. The window of vaccination times still needs to be explored in future studies. Clinical trial registration: This trial was registered with ChiCTR2100049138.


Assuntos
COVID-19 , Doenças Reumáticas , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacinas contra COVID-19 , Imunização , Imunoglobulina G , SARS-CoV-2 , Células T Auxiliares Foliculares , Vacinação , Estudos de Casos e Controles
18.
Ann Lab Med ; 43(3): 290-294, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544341

RESUMO

While numerous studies have evaluated humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, data on the cellular responses to these vaccines remain sparse. We evaluated T cell responses to ChAdOx1-nCoV-19 and BNT162b2 vaccinations using an interferon gamma (IFN-γ) release assay (IGRA). ChAdOx1-nCoV-19- and BNT162b2-vaccinated participants initially showed stronger T cell responses than unvaccinated controls. The T cell response decreased over time and increased substantially after the administration of a BNT162b2 booster dose. Changes in the T cell response were less significant than those in the anti-receptor-binding domain IgG antibody titer. The study results can serve as baseline data for T cell responses after SARS-CoV-2 vaccination and suggest that the IGRA can be useful in monitoring immunogenicity.


Assuntos
COVID-19 , ChAdOx1 nCoV-19 , Humanos , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Antivirais
19.
Front Immunol ; 14: 1254659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239369

RESUMO

Background: Data on cellular response and the decay of antibodies and T cells in time are scarce in lung transplant recipients (LTRs). Additionally, the development and durability of humoral and cellular immune responses have not been investigated in patients on the waitlist for lung transplantation (WLs). Here, we report our 6-month follow-up of humoral and cellular immune responses of LTRs and WLs, compared with controls. Methods: Humoral responses to two doses of the mRNA-1273 vaccination were assessed by determining spike (S)-specific IgG antibodies and neutralizing antibodies. Cellular responses were investigated by interferon gamma (IFN-γ) release assay (IGRA) and IFN-γ ELISpot assay at 28 days and 6 months after the second vaccination. Results: In LTRs, the level of antibodies and T-cell responses was significantly lower at 28 days after the second vaccination. Also, WLs had lower antibody titers and lower T-cell responses compared with controls. Six months after the second vaccination, all groups showed a decrease in antibody titers and T-cell responses. In WLs, the rate of decline of neutralizing antibodies and T-cell responses was significantly higher than in controls. Conclusion: Our results show that humoral and cellular responses in LTRs, if they develop, decrease at rates comparable with controls. In contrast, the inferior cellular responses and the rapid decay of both humoral and cellular responses in the WL groups imply that WLs may not be protected adequately by two vaccinations and repeat boostering may be necessary to induce protection that lasts beyond the months immediately post-transplantation.


Assuntos
COVID-19 , Transplantados , Humanos , Vacinas contra COVID-19 , Listas de Espera , Seguimentos , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Imunidade Celular , Pulmão
20.
Front Neuroanat ; 16: 984052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225228

RESUMO

Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...